服务热线
0572-26670979
这项研究中,技术人员选用了CAPA 2205、CAPA 2402和CAPA 2803这三种牌号的聚己内酯,二乙醇胺作为扩链剂、Dabco® BLV(三乙烯二胺:双二甲胺基乙基醚为3:1的混合催化剂)和Dabco® T-9(辛酸亚锡)作为催化剂与MDI反应。水作为化学发泡剂添加量为1 pphp。通过配方调试,材料制备,材料表征到材料物理性能检测,技术人员提出了这种聚氨酯弹性体的形变机理。宏观上,聚氨酯弹性体材料表现出应力延展性和负热膨胀性。微观形貌的变化主要是泡孔受应力或在低温下可被扩大。而在纳米尺度下,材料受热或在拉伸的情况下结晶度都会下降,同时材料不受力时结晶度下降可导致材料密度下降而体积增大。然而这种弹性体材料的高结晶性很可能收益于水发泡的生产工艺,因为水发泡的聚氨酯中的脲基含量比物理发泡的材料中的高不少,而脲基可形成的氢键更多所以比氨基甲酸酯基的结晶性高,并且表现出更加明显的可逆低温结晶性。所以,本质上是水发泡赋予了这种聚氨酯材料良好的可逆的负热膨胀性,就是这种材料形状记忆性能的原理之一。
材料形变的机理是如此简单清晰,但是这能指导哪些实际应用呢?文章作者给出了一个有趣的例子。当材料为U形的块材时,根据机理推断,材料受热则开口角度变大,受冷则开口角度变小(图2)。最后,他们也用试验证明了这种推断(图3)。他们制成的有缺口的圆柱状块材在高温时缺口变大,而在低温时缺口变小,而且这种温控形变是可逆的。
这种材料以及这种形变的机理在实际中可能会有哪些应用呢?也许智能温控阀是一个可能的应用领域,这种聚氨酯的弹性体可以通过封堵低温流体而放行高温流体来实现温控开关功能。而智能温控阀不但在自动化生产中有较多的应用,还可用于智能防护等领域。这种材料还可能有哪些应用呢?这是值得聚氨酯材料人思考的一个问题。
Copyright 2019 浙江谦达机电科技有限公司 All Rights Reserved 浙ICP备19050343号-1